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1 Description of Task 
In the early stage of the development of new nanotechnological techniques major gaps in 
quantified material and energy flow data exist. Likewise, when comparing established or 
mature technologies with those still in development, one must recognize that a new 
technology is at the beginning of its “learning curve” and holds the potential for 
significant increases in practical knowledge. Against this background, methods are 
developed to extrapolate and scale-up nanomanufacturing processes from the laboratory 
scale to plant scale. The different influences of the inputs and outputs of the process are 
considered by appropriate conversion factors (e.g. change of yield, change of energy 
efficiency, change of efficiency of operating supplies). 

The goal of the task 2.3 is the development of methods to extrapolate and scale-up 
nanomanufacturing processes to integrate the information in forecast LCA data.  

2 Description of Work & Main Achievements 

2.1 Introduction 
In the early stage of the development of new nanotechnologies, a large degree of 
freedom exists to perform a more prospective environmental (or technological) 
assessment and a more preliminary assessment of nanotechnology. 

Due to the interdisciplinary nature of nanotechnology, an enormous wealth of methods 
for the production of nano-scale products can be found in the literature. Products can for 
example be differentiated according to their basic nano-scale structure: particle-like 
structures (e.g. nanocrystals, nanoparticles, and molecules), linear structures (e.g. 
nanotubes, nanowires, and nanotrenches), layer structures (nanolayers), and other 
structures such as nanopores, etc. Materials can also be produced from the gas phase, 
the liquid phase, or from solids in such a way that they are nano-scalar in at least one 
dimension.  

These techniques can be classified based on the type of approach as top-down or 
bottom-up. Top-down processes achieve nanoscale dimensions through carving or 
grinding methods (e.g., lithography, etching, and milling). Bottom-up methods assemble 
matter at the atomic scale through nucleation and/or growth from liquid, solid, or gas 
precursors by chemical reactions or physical processes (e.g. gas-phase deposition, flame-
assisted deposition, sol-gel processes, precipitation, and self-organization techniques).  

With the enormous variety of manufacturing processes of nanomaterials it would be 
naturally very desirable to know already as early as possible in the innovation process 
with which environmental impacts these various specific nanotechnological techniques 
are connected. 

Life cycle assessment (LCA) is the most extensively developed and standardized 
methodology for assessing the environmental aspects and product-specific potential 
environmental impacts associated with the complete life cycle of a product or a process 
system.  

The essential basis of analysis through LCA is the inventory data, such as type and 
amount of material and energy flows (raw material inputs, wastes, emissions, etc.). The 
LCA can be carried out at different stages of new nanomaterial and product development 
such as at laboratory level, pilot, small scale or large scale plant. 
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Especially in the context of the early stage of the process development specific questions 
arise: 
• How can LCA data based on a laboratory experiment or based on a pilot plant be 

representative in comparison with LCA data of an industrial scale plant?   
• How large are the differences of LCA data between each stage of process or product 

development? 
• Are extrapolating estimations in different scenarios for the Scale-up and optimization 

of the different nanotechnologically-based manufacturing process possible? 
 
The development of methods to extrapolate and scale-up nanomanufacturing processes 
to integrate the information in forecast LCA data is carried out in two steps 

1. Evaluation of published LCAs of the manufacture of nanoparticles and 
nanocomponents 

2. Description of principle method of LCA forecast of plant based on laboratory data 

2.2 Evaluation of published LCAs of the manufacture of 
nanoparticles and nanocomponents  

The largest groups of manufactured nanoparticles for industrial applications are 
inorganic nanoparticles (e.g. TiO2, ZnO, SiO2, Ag), carbon-based nanomaterials (carbon 
nanofiber, multi wall carbon nanotubes (MWCNT), single wall carbon nanotubes 
(SWCNT)), and quantum dots (semiconductor nanoparticles with a specific size (e.g. 
CdSe, CdS, GaN)). Beside qualitative environmental assessments of the different 
manufacturing methods (Steinfeldt et al. 2007; Sengül et al. 2008), unfortunately 
quantified material and energy flows data exist also within this range only for a very small 
number of manufacturing processes and/or for individual nanomaterials. A summary of 
published studies is shown in Table 1. Particularly remarkable is that the majority of the 
studies investigate the production of carbon-based nanomaterials. 
 
Table 1: Overview of studies of published LCAs of the manufacture of nanoparticles and 
nanocomponents (based on Meyer et al  (2009) and own data) 

Nanoparticle and/or 
nanocomponent 

Assessed impact(s) References 

Carbon nanotubes Substance Flow Analysis (SFA) (Lekas 2005) 
Metal nanoparticle 
production (TiO2, ZrO2) 

Cradle-to-gate energy assessment, 
global warming potential 

(Osterwalder et al. 2006) 

Nanoclay production Cradle-to-gate assessment, energy 
use, global warming potential, ozone 
layer depletion, abiotic depletion, 
photo-chemical oxidant formation, 
acidification, eutrophication, cost 

(Roes et al. 2007) 

Several nanomaterial 
syntheses 

E-factor Analysis (Eckelman et al. 2008) 

Carbon nanoparticle 
production 

Cradle-to-gate energy assessment (Kushnir and Sandén 2008) 

Carbon nanotube 
production 

Cradle-to-gate assessment with 
SimaPro software, energy use, global 
warming potential, … 

(Singh et al. 2008) 

Single-walled carbon 
nanotube (SWCNT) 
production 

Cradle-to-gate assessment with 
SimaPro software, energy use, global 
warming potential, … 

(Healy et al. 2008) 

Carbon nanofiber 
production 

Energy use, global warming potential, 
ozone layer depletion, radiation, 
ecotoxicity, acidification, 

(Khanna et al. 2008) 
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eutrophication, land use 
Nanoscale 
semiconductor 

Cradle-to-gate assessment, energy 
use, global warming potential 

(Krishnan et al. 2008) 

Single-walled carbon 
nanotube (SWCNT) 
synthesis process 

Stochastic multiattribute analysis (Canis et al. 2010) 

Nanoscaled polyanilin 
production 

Cradle-to-gate assessment with 
Umberto software, energy use energy 
use, global warming potential, … 

(Steinfeldt et al. 2010a) 

Multi-walled carbon 
nanotube (MWCNT) 
production 

Cradle-to-gate assessment with 
Umberto software, energy use, global 
warming potential, … 

(Steinfeldt et al. 2010a) 

Nanoscaled Titanium 
dioxide 

Cradle-to-gate assessment, 
Ecoindicator 99 methodology, energy 
use, exergy 

(Grubb and Bakshi 2010) 

Fullerene (C60, C70) Cradle-to-gate assessment with 
SimaPro, energy use, material 
intensity 

(Anctil et al. 2011) 

Silver nanoparticle 
production 

Cradle to gate assessment with 
Umberto software and economic 
analysis, cost, energy use, global 
warming potential, … 

(Kück et al. 2011) 

 
Lekas evaluated in a substance flow analysis carbon nanotubes (CNT) throughout the 
economy from cradle to grave. The goal of the study was to gather production and use 
information of carbon nanotubes (current production, raw material inputs and quantities, 
end-use applications and destination of materials) from literature and nanotube company 
(Lekas 2005). 

Osterwalder and coworkers performed cradle-to-gate assessments of titanium dioxide 
(TiO2) and zirconia dioxide (ZrO2) nanoparticle production (Osterwalder et al. 2006). The 
goal of the study was to compare energy requirements and greenhouse gas emissions for 
the classical milling process with that of a novel flame synthesis technique using organic 
precursors. The functional unit of the study was 1 kg of manufacturing materials. 

Roes and co-workers evaluated the use of nanocomponents in packaging film, 
agricultural film, and automotive panels (Roes et al. 2007). The goal of the prospective 
assessment was to determine if the use of nanoclay additives in polymers (polypropylene, 
polyethylene, glass fibre-reinforced polypropylene) is more environmentally advantageous 
than conventional materials. Specific material and energy flows of the nanoclay 
production were collected. The manufacture of nanoclay includes several processes, e.g. 
raw clay (Ca-bentonite) extraction, separation, spray drying, organic modification, filtering, 
and heating.  

Eckelman and co-workers have performed an E-factor analysis of several nanomaterial 
syntheses (Eckelman et al. 2008), as the E-factor is a measure of environmental impact 
and sustainability that has been commonly employed by chemists. The E-factor (or waste-
to-product ratio) includes all chemicals involved in production. Energy and water inputs 
are generally not included in E-factor calculations, nor are products of combustion, such 
as water vapour or carbon dioxide. Unfortunately, the results are not comparable with the 
other studies.  

Kushnir and Sanden modeled the requirements of future production systems of carbon 
nanoparticle and used also a cradle-to-gate perspective, including all energy flows up to 
the production and purification of carbon nanoparticles (Kushnir and Sanden 2008). All 
calculations are made for a functional unit of 1 kg of nanoparticles. Several production 
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systems (fluidized bed chemical vapour deposition (CVD), floating catalyst CVD, HiPco, 
pyrolysis, electric arc, laser ablation, and solar furnace) are investigated and possible 
efficiency improvements are discussed. Carbon nanoparticles were found to be highly 
energy-intensive materials, in the order of 2 to 100 times more energy intensive than 
aluminium, given a thermal to electric conversion efficiency of 0.35. 

Singh and co-workers performed environmental impact assessments for two potential 
continuous processes for the production of carbon nanotubes (CNT) (Singh et al. 2008). 
The high–pressure carbon monoxide disproportionation in a plug-flow reactor (CNT-PFR) 
and the cobalt-molybdenum fluidized bed catalytic reactor (CNT-FBR) were selected for 
the conceptual design. The CNT-PFR reactor has catalytic particles formed in situ by 
thermal decomposition of iron carbonyl. The CNT-FBR process employs the synergistic 
effect between the cobalt and molybdenum giving high selectivity to carbon nanotubes 
from CO disproportionation. 

Healy and co-workers have performed life cycle assessment of the three more 
established SWNT manufacturing processes: arc ablation (arc), chemical vapour 
deposition (CVD), and high pressure carbon monoxide (HiPco) (Healy et al. 2008). Each 
method consists of process steps that include catalyst preparation, synthesis, 
purification, inspection, and packaging. In any case, the inspection and packaging steps 
contribute minimally to the overall environmental loads of the processes. Although the 
technical attributes of the SWNT products generated via each process may not always be 
fully comparable, the study provides a baseline for the environmental footprint of each 
process. All calculations are made with a functional unit of 1 g of SWNT. 

Khanna and co-workers (Khanna et al. 2008) have performed a cradle-to-gate 
assessment of carbon nanofiber (CNF) production. The goal of the assessment was to 
determine the non-renewable energy requirements and environmental impacts 
associated with the production of 1 kg of CNFs. Life cycle energy requirements for CNFs 
from a range of feedstock materials are found to be 13 to 50 times higher than primary 
aluminium on an equal mass basis. 

Krishnan and co-workers have presented a cradle-to-gate assessment and a developed a 
library of materials and energy requirements, and global warming potential of nanoscale 
semiconductor manufacturing (Krishnan et al. 2008). The goal of the study was to 
identify potential process improvements. The functional unit selected was 1 silicon wafer 
with a 300-mm diameter that can be used to produce 442 processor chips. The total 
energy required for the process is 14,100 MJ/wafer including 2,500 MJ/wafer that 
accounts for the manufacture of fabrication equipment. The greenhouse potential is 13 
kg CO2 eq/wafer. 

Canis and co-workers (Canis et al. 2010) relate to a product development problem of 
selecting the most advantageous technology for manufacturing single-walled carbon 
nanotubes (SWCNT). Four different synthesis processes were investigated: High Pressure 
Carbon Monoxide (HiPCO), arc discharge (Arc), chemical vapor deposition (CVD), and 
laser vaporization (Laser). The case study is an example of a stochastic multicriteria 
decision analysis (MCDA)-based method for situations where knowledge of the weights is 
lacking and uncertainty about criteria scores is significant. Unfortunately, the results are 
not comparable with the other studies.  

Steinfeldt and co-workers have performed several in-depth life cycle assessments of 
processes and products, including cradle-to-gate assessments of the production of 
nanoscaled polyaniline and of the production of multi-walled carbon nanotube (MWCNT) 
(Steinfeldt et al. 2010a). With the cooperation of producers, it was possible to produce 
detailed models of the manufacturing processes for nanoscaled polyaniline and MWCNT, 
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and to generate specific life cycle assessment data. 

Grubb and Bakshi (2010) have investigated the life cycle assessment of the 
hydrochloride nanomanufacturing process for producing TiO2 nanoparticles in comparison 
with conventional titanium dioxide. The functional unit of the study was 1 kg of 
manufacturing materials. This work also includes an exergy analysis to account for 
material resource consumption in the process. 

Anctil and co-workers (Anctil et al. 2011) have performed a cradle-to-gate energy 
assessment of manufacturing of fullerenes and modified derivatives. The inventory is 
based on the functional unit of 1 kg of product (either C60 or C70), and four synthesis 
methods were investigated. The embodied energy of 1 kg C60 after synthesis and 
separation is very different (pyrolysis with tetralin 12.7 GJ/kg C60; pyrolysis with toluene 
17.0 GJ/kg C60; plasma Arc 88.6 GJ/kg C60, and plasma radio frequency (RF) 106.9 
GJ/kg C60). 

Kück and co-workers (Kück et al. 2011) have investigated green silver nanoparticle 
production using a micro reactor technology method in comparison with water-based 
batch synthesis. The aim of the study was to reveal the potential and constraints of this 
approach and to show how economic and environmental costs vary depending on 
process conditions. Because of the lower energy consumption and lower demand of 
cleaning agents, the micro reactor is the best ecological choice.  

The data above can provide some insights regarding the potential burdens that must be 
addressed if the large-scale use of these types of nanoparticles and nanocomponents is 
to continue. For this purpose, the data from the studies is expressed in a common mass-
based unit. Accordingly, energy demand is presented in MJ-Equivalents/kg material and 
global warming potential is expressed as kg CO2-Equivalent/kg product. Energy 
consumption during the product life cycle is very important because it relates to the 
consumption of fossil fuels and the generation of greenhouse gases. Therefore, it is 
desirable to design manufacturing processes that minimize the use of energy. The data 
for energy consumption of the materials discussed above is shown in Figure 1 and 2. 
Additionally the comparison data of conventional materials is included. 

The represented cumulative energy requirements for various carbon nanoparticle 
manufacturing processes differ very strongly from each other. The various processes for 
the production of SWCNT (excluding equipment fabrication) are by far the most energy 
intensive processes as compared with the production of other carbon nanoparticles. A 
cause for the very large differences between the examined studies lies in the different 
process conditions (temperature, pressure) of the manufacturing processes. Furthermore 
large differences are found in the assumptions of reaction and purification yields. The 
relatively small reference value appears remarkable for the mass production of carbon 
black by means of flame synthesis and also for the pilot plant production of MWCNT 
based on catalyst CVD. 
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Figure 1. Comparison of the cumulative energy requirements for various carbon nanoparticle 
manufacturing processes [MJ-Equivalent/kg material]  

The comparison of the cumulative energy requirements for the production of other 
conventional and nanoscaled materials and components make clear that the production 
of nanosemiconductors is also a very energy intensive process. Only the extraction of the 
precious metal platinum as an example is still more complex. The production of 
nanoscaled polyaniline is likewise very energy-intensive. 
 

 
 
Figure 2. Comparison of the cumulative energy requirements for the production of various 
conventional and nanoscaled materials and components [MJ-Equivalent/kg product] ( in parts own 
calculation) 

A comparison of the global warming potential for the production of various conventional 
and nanoscaled materials is shown in Figure 3. The production of silver nanoparticles has 
the largest impact when compared to the other materials. However, the production of 
carbon nanofiber and nanoscaled polyaniline demonstrates also a high global warming 
potential. The reason for the larger global warming potentials for silver nanoparticle, CNF 
and polyaniline manufacturing is the much larger energy requirements when compared to 
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other nanoparticle production. Also the cleaning agents in the manufacturing processes 
have a large influence on the global warming potentials. The production of MWCNT based 
on fluidized bed catalyst CVD is notable also here with a small global warming potential. 
 

 
 
Figure 3: Comparison of the global warming potential  for the production of various conventional and 
nanoscaled materials [CO2-Equivalent/kg product] ( in parts own calculation) 

The represented data are characterized by a wide range. They are derived from different 
LCA studies. The models of the LCA studies depict partly model data, partly laboratory 
data, partly data from pilot plants and large scale plant data, so that an evaluation of the 
results is very difficult. The comparability of the analyzed data is not actually given. 

The data presented are results of ‘Cradle-to-gate’ Life Cycle Assessments of the 
production of different nanomaterials. The data do offer useful insight when considering 
the environmental impact of various nanotechnology-based applications with ‘Cradle-to-
grave’ Life Cycle Assessments. Cradle-to-grave is the full Life Cycle Assessment from 
(pre)manufacture to use phase and disposal / recycling phase of applications. It is 
commonly pointed out that the nanocomponent is only a fraction of the total product 
(often only 1, 2 or 3 percent) implying that only a small fraction of the environmental 
impact of a nanoproduct can be attributed to the nanocomponent and its manufacture. 
The high specific energy demand for the production of the nanoparticle is reflected itself 
then in nanoproduct. 

2.3 Description of principle method of LCA forecast of plant 
based on laboratory data 
In the new approach of LCA forecasts are modeled on the laboratory experiments and 
mini plants level. On this basis extrapolating estimations in different scenarios for the 
Scale-up and optimization of the manufacturing process are investigated (see figure 4).  
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Figure 4: Principle method of LCA forecast of plant based on laboratory data (fol lowing Shibasaki 
2007 and 2009)  

The different influences of the inputs and outputs of the manufacturing process are 
considered by appropriate conversion factors. 

Influence and Conversion factor by Scale up 

The development of new nanotechnology based process passes through several 
theoretical and experimental development phases from calculation models, laboratory 
scale, mini plant, pilot plant to the industrial (small or large) scale. LCA analyses the 
manufacturing processes from a technical point of view. For reaching a specific scale up 
estimation, it is necessary to examine the technical process for scalability. Many chemical 
processes can be scaled up using dimension analysis. Also several nanological 
manufacturing processes (e.g. chemical vapor deposition) can be scaled up in this form. 

Influence and Conversion factor by Optimization 

The production scale process is an optimized process with high efficiency. During the 
process development at the laboratory stage the technological ‘learning curve’ is in the 
beginning. That means that the yield of synthesis, the energy efficiency, the efficiency of 
operating supplies, and the material efficiency are still not very optimized. With the 
passage of time, the enterprises gain practical knowledge in handling new technology, 
enabling them to reduce the material and energy inputs per unit. E.g. the yield of the new 
chemical process is in the beginning at the laboratory scale only 50 - 60 percent. A 
successful industrial process or a chemical synthesis should ensure a degree of 
efficiency of 80-90 percent. 

A yield change can be expressed in relevant LCA data by change of required materials per 
functional unit, energy requirements per functional unit, emissions per functional unit etc. 
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Influence and Conversion factor by other Technical changes  

A scale up from the laboratory scale to a production plant is often accompanied by 
technical changes and changes in plant design. Batch processes are mostly carried out in 
the laboratory scale. Continuous processes are more favorable for the cost effective 
production with higher output of products. The effect of the change from batch to 
continuous manufacturing process is taken into account in the conversion factor ‘Other 
technical changes’. 

After the investigation of all these possible influences it is possible to estimate different 
conversion factors. These possible conversion factors affect the change of specific 
material flows, of specific operating supplies flows, and of specific energy flows of the 
forecast plant processes in comparison to the analyzed laboratory processes.  

So it is possible to perform cradle-to-gate Life Cycle Inventory data of nanotechnological 
techniques for the production of nanoparticles and nanocomponents in scale-up plant 
(see figure 4).  

3 Deviations from the Workplan 
The planned two steps of the task  

1. Evaluation of published LCAs of the manufacture of nanoparticles and 
nanocomponents 

2. Description of principle method of LCA forecast of plant based on laboratory data 
are on schedule.  

 
During the work on this task, it became clear that, in addition and expansion to the 
proposal, a further step should be added. We are planning the following third step: 
Plausibility check, testing and derivation of appropriate conversion factors on basis of the 
SUN case studies. 
This step can be performed only in the further phase of the project parallel to the case 
studies and will be reported after the month 24 as an annex of D2.2. 

4 Performance of the Partners 
All partners performed in satisfactory time and quality. 

5 Conclusions 
The goal of the task 2.3 is the development of methods to extrapolate and scale-up 
nanomanufacturing processes to integrate the information in forecast LCA data.  

Currently, a large number of data gaps exist when considering the application of LCA to 
nanoproducts. Specifically, only minimal data detailing the material and energy inputs 
and environmental releases related to the manufacture, release, transport, and ultimate 
fate of nanocomponents and nanoproducts exist. The presented new approach of 
prospective technological assessment of nanotechnological processes throughout their 
life cycle based on prospective scenarios and scaling-up models can help to close the 
existing data gaps. 

The development of methods to extrapolate and scale-up nanomanufacturing processes 
to integrate the information in forecast LCA data is carried out in two steps 

1. Evaluation of published LCAs of the manufacture of nanoparticles and 
nanocomponents 



SUN   Deliverable 2.2 

File: SUN_D_2_2.docx 12 of 14 

2. Description of principle method of LCA forecast of plant based on laboratory data 

These planned steps of the task are completed. During the work on this task, it became 
clear that, in addition and as an expansion to the proposal, a further step should be 
added.  

Quantification of the conversion factors will be determined as far as possible in the 
context of further work on the case studies. The practical knowledge of the project 
enterprises in upscaling processes should be obtained. In addition, the manageability of 
the conversion factors as well as pooling the different flows (main materials, energies, 
operating supplies) should be checked. 

The results of this third step ‘Plausibility check, testing and derivation of appropriate 
conversion factors on basis of the SUN case studies’ will be reported after the month 24 
as an annex of D2.2. 
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